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BACKGROUND: Pulmonary inflammation is believed to be central to the pathogenesis due to exposure to fine particulate matter with aerodynamic di-
ameter ≤2:5 lm (PM2:5). This central role, however, has not yet been systemically examined.
OBJECTIVE: In the present study, we exploited a lung epithelial cell-specific inhibitor jB kinase 2 (IKK2) knockout mouse model to determine the
role of pulmonary inflammation in the pathophysiology due to exposure to diesel exhaust particulate matter (DEP).

METHODS: SFTPC-rtTA+ =− tetO-cre+ =− IKK2flox=flox (lung epithelial cell-specific IKK2 knockout, KO) and SFTPC-rtTA+ =− tetO-cre+ =− IKK2flox=flox

(wild-type, tgWT) mice were intratracheally instilled with either vehicle or DEP for 4 months, and their inflammatory response and glucose homeostasis
were then assessed.
RESULTS: In comparison with tgWT mice, lung epithelial cell-specific IKK2-deficient mice had fewer DEP exposure-induced bronchoalveolar lavage
fluid immune cells and proinflammatory cytokines as well as fewer DEP exposure-induced circulating proinflammatory cytokines. Glucose and insu-
lin tolerance tests revealed that lung epithelial cell-specific IKK2 deficiency resulted in markedly less DEP exposure–induced insulin resistance and
greater glucose tolerance. Akt phosphorylation analyses of insulin-responsive tissues showed that DEP exposure primarily targeted hepatic insulin
sensitivity. Lung epithelial cell–specific IKK2-deficient mice had significantly lower hepatic insulin resistance than tgWT mice had. Furthermore, this
difference in insulin resistance was accompanied by consistent differences in hepatic insulin receptor substrate 1 serine phosphorylation and inflamma-
tory marker expression.
DISCUSSION: Our findings suggest that in a tissue-specific knockout mouse model, an IKK2-dependent pulmonary inflammatory response was essen-
tial for the development of abnormal glucose homeostasis due to exposure to DEP. https://doi.org/10.1289/EHP4591

Introduction
Exposure to fine particulate matter with aerodynamic diameter
≤2:5 lm (PM2:5) correlates with increased risk for type 2 diabe-
tes mellitus and various abnormalities in glucose homeostasis
(Bowe et al. 2018; Lucht et al. 2019; Lucht et al. 2018). However,
how PM2:5 exposure promotes the development of abnormal glu-
cose homeostasis remains to be determined (EPA 2018). Putative
mechanisms for this include: a) extrapulmonary translocation of
PM2:5 components; b) autonomic nervous system (ANS) dysfunc-
tion; and c) egress from the pulmonary inflammatory response
(Rajagopalan et al. 2018). The evidence is strongest for egress
from the pulmonary inflammatory response. Specifically, many
studies have demonstrated that exposure to PM2:5 causes pro-
nounced pulmonary inflammation in humans (e.g., Habre et al.
2018; Kubesch et al. 2015) and in animal models (e.g., Happo et al.
2007; He et al. 2017), and a time course study revealed that PM2:5
exposure-induced pulmonary inflammation preceded adverse
extrapulmonary effects, such as systemic inflammation (Brook et al.
2010). As it is a consensus that systemic inflammation plays a cru-
cial role in the pathogenesis of type 2 diabetes mellitus, pulmonary
inflammation is postulated to be central to the pathogenesis of
abnormal glucose homeostasis due to exposure to PM2:5 (Brook

et al. 2017). Consistent with this notion, we recently showed that
pulmonary inflammation subsequent to lung epithelial cell-specific
overexpression of constitutively active inhibitor jB kinase 2
(IKK2ca) was sufficient to induce marked insulin resistance (Chen
et al. 2017). However, we also found that 5 wk of withdrawal from
exposure to PM2:5 resolved PM2:5 exposure–induced extrapulmo-
nary inflammation, vascular dysfunction, and hypertension, but not
pulmonary inflammation (Ying et al. 2015), suggesting that a mech-
anism other than pulmonary inflammation may also be involved in
PM2:5 exposure–induced systemic inflammation or abnormalities in
glucose homeostasis. Further studies are thus needed to pinpoint the
role of pulmonary inflammation in the development of adverse
effects due to PM2:5 exposure.

IKK2 regulates nuclear factor-kappaB (NF-jB) activity and
plays a crucial role in both acute and chronic inflammations (Pahl
1999). Studies have shown that exposure to PM2:5 activates the
IKK2=NF-jB pathway in various tissues, including the lung
(Dagher et al. 2007; Kafoury and Madden 2005; Maciejczyk and
Chen 2005; Mantecca et al. 2010; Nam et al. 2004). Furthermore,
inhibition of IKK2 blocked PM2:5 exposure–induced expression
of inflammatory cytokines in respiratory epithelial cells (Li et al.
2013) and alveolar macrophages (Kafoury and Madden 2005),
suggesting that targeting pulmonary IKK2 might disconnect
PM2:5 exposure and pulmonary inflammation. In the present
study, we therefore generated lung epithelial cell–specific IKK2-
deficient mice (SFTPC-rtTA+ =− tetO-cre+ =− IKK2flox=flox) and
used them to ascertain the role of pulmonary inflammation in the
pathogenesis of insulin resistance due to exposure to diesel
exhaust particulate matter (DEP).

Materials and Methods

Animals
University of Maryland, Baltimore (UMB) is an AAALAC-
accredited institution. All procedures in this study were approved
by the Institutional Animal Care and Use Committee (IACUC) at
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UMB, and all the animals were treated humanely and with regard
for alleviation of suffering. SFTPC-rtTA (Stock No. 016146) and
tetO-cre (Stock No. 006224) transgenic mice were obtained from
Jackson Laboratories. The generation of IKK2flox=flox mice
were previously described (Maeda et al. 2003). Male SFTPC-
rtTA+ =− tetO-cre+ =− IKK2flox=flox (3 for Figure 1B, 5 for
Figures 1C and 1D, 6 for instillation of PBS, and 7 for instillation
of DEP) and male SFTPC-rtTA+ =− tetO-cre−=− IKK2flox=flox lit-
termates (3 for Figure 1B, 5 for Figures 1C and 1D, 7 for instilla-
tion of PBS, and 8 for instillation of DEP) were generated through
crossing between SFTPC-rtTA+ =+ tetO-cre+ =− IKK2flox=flox and
IKK2flox=flox. To induce the deletion of IKK2, after weaning, all the
mice were fed with doxycycline in their diet (625 mg=kg diet,
Envigo TD.01306) for 8 wk. Due to the concern about the doxycy-
cline feeding as a potential confounding factor, all the mice in this
study were not fed with the doxycycline diet beyond the 8 wk of
doxycycline feeding. To prevent confusion, in the present study,
these doxycycline diet–fed male SFTPC-rtTA+ =− tetO-cre+ =−

IKK2flox=flox mice and male SFTPC-rtTA+ =− tetO-cre−=− IKK2flox=flox

littermates are referred to as knockout (KO) and wildtype (tgWT)
mice, respectively. All the mice were housed in standard cages
(Super Mouse 1800™ Ventilated Racks & Cages; Lab Products,
Inc.) with full access to diet [either the doxycycline diet or Teklad
global 14% protein (Envigo) diet, replaced weekly] and water
(replaced weekly). The room was kept with a 12-h light/12-h dark
cycle, temperatures of 65 to 75°F, and 40 to 60% humidity. The
mice used in the present study were weaned when 21–24 days old.

PCR Genotyping and Confirming the Deletion of IKK2 by
the Doxycycline Feeding
All one-week-old newborns were subjected to tail biopsying, and
the genomic DNA were extracted from those biopsies. The geno-
type of each mouse was determined by polymerase chain reaction
(PCR), using the genotyping primers (Table 1). The PCR cycling
parameters included: 4 min predenaturing at 94°C and 35 cycles
of 30-s denaturing at 94°C, 30-s annealing at 60°C, and 60-s
extension at 72°C. Before PBS/DEP instillation, all the mice
were genotyped again as described above to verify their geno-
types. To confirm the induced deletion of IKK2 by the doxycycline
feeding, three tgWT and three KO were euthanized at the end of
the doxycycline feeding, and the genomic DNA were extracted
from the heart, liver, lung, and kidney. The WT, floxed, and D al-
leles were visualized by PCR using the deletion-confirming pri-
mers in Table 1 (obtained from Sigma-Aldrich). The above-
mentioned PCR cycling parameters were applied.

DEP Intratracheal Instillation
DEP was obtained from the National Institute of Standards and
Technology (DEP, NIST® SRM® 2975). The chemical chara-
cterization of this DEP is available at www-s.nist.gov/srmors/
certificates/2975.pdf. Its mean diameter of particles was 1:62±
0:01 lm. It was stored at 4°C and kept away from direct sunlight.
To perform instillation, DEP was suspended in sterile phosphate-
buffered saline (PBS). To minimize aggregation, DEP suspen-
sions were sonicated (Clifton Ultrasonic Bath) for 20 min on the
day of instillation and vortexed 30 s before each instillation. The
instillation of DEP was initiated when mice were 12–14 wk old
(1–2 wk after 8-wk feeding of the doxycycline diet). The KO and
tgWT mice were housed mixedly, and each cage was randomly
allocated to either PBS or DEP instillation. The instillation of
DEP was performed as previously described (Kyjovska et al.
2015), with minor modifications. Briefly, to instill DEP, the ani-
mals were anesthetized with 3% isoflurane and placed supine
with extended necks on an angled board. A Becton Dickinson 18

Gauge cannula was inserted via the mouth into the trachea. DEP
suspension (20 lg in 50 ll, approximately equating to inhalational
exposure to 160 lg=m3 PM2:5) (Bide et al. 1997) or PBS (50 ll)
were intratracheally instilled via a sterile syringe and followed by
an air bolus of 150 ll. The intubation catheter was removed and
the mouse transferred to a vertical hanging position with the head
up for 5 min, ensuring that the delivered material was maintained
in the lung and did not block the airways. Either DEP or PBS was
instilled 3 times per week (Monday, Wednesday, and Friday) for
19 wk.

Intraperitoneal Glucose Tolerance Test (IPGTT) and
Glucose-Induced Insulin Secretion Assessment
IPGTT was performed monthly (on the fourth Tuesday of each
month) during the 4-month exposure to DEP. Before testing, mice
were fasted for 16 h. The blood of mouse tail vein was collected
through a small cut to determine the blood glucose level. On the
day of the experiments, after determination of basal (0 min) blood
glucose level using an automatic glucometer (Glucotrend 2, Roche
Diagnostics), mice were intraperitoneally injected with glucose
[2 g=kg body weight (BW)]. Blood glucose levels at 15, 30,
60, and 120 min after injection of glucose were then measured
using the automatic glucometer. When performing the last IPGTT
(4-month exposure), sera at 0, 15, and 30 min were harvested, and
their insulin levels were determined using Ultra Sensitive Mouse
Insulin ELISA Kit (Crystal Chem, Inc.) per the manufacturer’s
instructions. To harvest the sera, the blood of mouse tail vein was
allowed to clot for 30 min at room temperature, and then centri-
fuged at 10,000 rpm and 4°C for 10 min. The supernatants were
transferred to new tubes and kept at −80�C until the assessment of
insulin.

Insulin Tolerance Test (ITT)
ITT was performed (one week after the last IPGTT) after the
4-month exposure to DEP. Before testing, mice were fasted for
4 h. The blood of mouse tail vein was collected through a small
cut for determining the blood glucose level. After determination
of basal blood glucose level using an automatic glucometer
(Glucotrend 2), mice were intraperitoneally injected with insulin
(0:5 U=kg BW). Blood glucose levels at 15, 30, 60, and 120 min
after injection of insulin were then measured as described above.

Animal Euthanasia, Bronchoalveolar Lavage, and Tissue
Harvesting
Animals were fasted overnight and injected intraperitoneally with
insulin (10 U=kg BW). This high dose of insulin is generally
used for assessing insulin-induced Akt phosphorylation in the
insulin-responsive tissues (Kim et al. 1999, 2000). After 20 min,
animals were euthanized by overdose of isoflurane. Blood was
collected from the heart and centrifuged at 3,000 rpm for 5 min.
Plasma and all other tissues (liver, epididymal adipose tissue, and
skeletal muscle) were immediately stored first in dry ice and then
at −80�C until further processing.

To perform bronchoalveolar lavage, the mouse lung, trachea,
and heart were removed and put on ice. Through a tracheal can-
nula, 1 mL sterile PBS with 0:1mM ethylenediaminetetraacetic
acid (EDTA) was instilled and withdrawn to recover bronchoal-
veolar lavage fluid (BALF). This lavage was performed three
times in total. The total number of cells in the collected BALF
(around 3 mL) was estimated using a hemocytometer. After
5 min centrifuge at 1,500 rpm, the BALF were stored in dry ice
and then −80�C until further processing, and the precipitated cells
were used for BALF cell differentiation. Cytospin slides were pre-
pared using Shandon Cytospin 3™ (Thermo Scientific) and stained
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Figure 1. Pulmonary inflammation after diesel exhaust particulate matter (DEP) treatment in mice with lung epithelial cell-specific IKK2 deficiency. (A) The
experimental scheme. a, genotyping; b, weaning and initiation of doxycycline (Dox) feeding; c, assessments of induced knockout by PCR and Western blotting;
d, initiation of phosphate buffered saline (PBS)/DEP instillation; e, euthanizing and tissue-harvesting. (B) SFTPC-rtTA+ =− tetO-cre+ =− IKK2flox=flox (knock-
out, KO) and littermate control (SFTPC-rtTA+ =− tetO-cre−=− IKK2flox=flox, transgenic wild-type control, tgWT) were fed with a doxycycline diet (625 mg=kg
diet) for 8 wk. Subgroups of these mice were immediately euthanized, the indicated tissues were isolated and their deletion of IKK2 was assessed by PCR. A
representative result is presented. Of all those tested mice (n=3=group), no evident outlier in any group was noted. K, KO; W, tgWT. The scale marker equals
1 cm. (C and D) KO and littermate control (tgWT) were euthanized immediately after the 8-wk feeding with a doxycycline diet (625 mg=kg diet), and their
lungs were isolated and subjected to Western blotting analysis of IKK2 protein expression. A representative image (C) and quantitation of results as a percent-
age of the b-actin loading control (D) are presented. n=5=group. *p<0:05 vs. tgWT, Student’s t test. (E–L) KO and tgWT mice were subjected to a 4-month
intratracheal instillation of either PBS or DEP. After euthanasia, BALF cells were differentiated (E–I). Levels of the indicated cytokines in those BALFs were
assessed using the BD Cytometric Bead Array Kit (J–L). n=6–8=group. All data were expressed as means±SEMs. *p<0:05 vs. PBS, #p<0:05 vs. tgWT,
two-way ANOVA followed by Bonferroni correction.
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with Diff-Quik solution (EMS) per the manufacturers’ protocols.
Differential cell counts for neutrophils, eosinophils, macrophages,
monocytes, and lymphocytes were assessed by a pathologist who
was blinded to the grouping.

Plasma and BALF cytokine analysis. Plasma and BALF
cytokine levels were assessed using the flex set of BD™
Cytometric Bead Array Kit (BD Biosciences, Catalog No.
560232, 558301, and 558299) per the manufacturer’s instruc-
tions. We assessed these three cytokines because they are the
most frequently used markers for evaluating the inflammatory
level. Briefly, 25 lLpermouse plasma were incubated with the
beads, and the signaling was assessed by BD Canto II flow
cytometry per the manual of the BD™ Cytometric Bead Array
Kit. The TNFa, interleukin ðILÞ-1b (IL-1b, and IL-6 levels of
each sample were then determined using the standard curves. To
facilitate statistical analysis, the cytokine level of all samples
measuring below the detection limit (provided by the manufac-
turer) was imputed to be the detection limit itself.

Western Blotting
Lysates of liver, epididymal adipose tissue, and skeletal muscle
were prepared using radioimmunoprecipitation assay (RIPA)
buffer (MilliporeSigma) supplemented with protease and phos-
phatase inhibitors (Sigma, Catalog No. P2714 and P5726).
Briefly, for each sample, a ∼ 5 mg piece of tissue was cut on ice.
Next, ∼ 300 lL of ice-cold lysis buffer was added rapidly to the
tube. The tissues were homogenized with Bead Ruptor Elite
Bead Mill Homogenizer (OMNI International) for 5 min, then
maintained with constant agitation for 30 min at 4°C. These
lysates were then centrifuged for 20 min at 12,000 rpm at 4°C.
The supernatants were transferred to fresh tubes on ice. The pro-
tein level for each sample was determined using Pierce™ BCA
Protein Assay Kit (ThermoFisher). For each sample, 40 lg pro-
tein was then separated by 10% SDS-polyacrylamide gel electro-
phoresis [freshly prepared using the PROTEAN® II XL Cell system
(Bio-Rad)] and electroblotted onto polyvinylidene fluoride mem-
branes (Immun-Blot PVDF Membrane; Bio-Rad, Catalog No.
1620177). The membrane was blocked using Amersham ECL
Prime Blocking Reagent (Catalog No. RPN418) for 1 h at room
temperature and then incubated with each of the following primary
antibodies overnight at 4°C: 1:500 diluted Phospho-IRS-1 (Ser307)
Antibody #2381 (Cell Signaling Technology), 1:500 diluted
Phospho-IRS-1 (Ser1101) Antibody #2385 (Cell Signaling Tech-
nology), 1:1,000 diluted IRS-1 Antibody #3194 (Cell Signaling
Technology), 1:500 diluted Phospho-SAPK/JNK (Thr183/Tyr185)
(G9) Mouse mAb #9255 (Cell Signaling Technology), 1:1,000
diluted SAPK/JNK Antibody #9252 (Cell Signaling Technology),
1:500 diluted Phospho-IKKa=b (Ser176/180) Antibody II #2694
(Cell Signaling Technology), 1:1,000 diluted IKKb (D30C6) Rabbit

mAb #8943 (Cell Signaling Technology), and 1:10,000 diluted
Monoclonal Anti-b-Actin Antibody A5316 (Sigma-Aldrich). After
washing with TBST buffer 3 times (10 min per time), the membrane
was incubated with 1:5,000 diluted secondary antibodies conjugated
with horseradish peroxidase (Amersham, Catalog Nos. NA931-
1ML and NA934-1ML) for 1 h at room temperature. After washing
with TBST buffer 3 times (10 min per time), the target proteins
were visualized with the chemiluminescence reagent (Amersham,
Catalog No. RPN2232). The images were acquired using
ImageQuant LAS 4000 (Amersham) per the manufacturer’s instruc-
tions. Densities of target protein bands were determined with
Quantity One® 1-D 4.4.1 Software (Bio-Rad).

Quantitative Reverse Transcriptase Polymerase Chain
Reaction (RT-PCR)
Total RNA was isolated from the livers with Invitrogen™
TRIzol™ reagent (Invitrogen) per the manufacturer’s instructions.
The RNA concentrations were determined using NanoDrop™ 2000/
2000c Spectrophotometers (Thermo Fisher). Any sample with an
OD260/OD280 ratio below 1.2 was not used. In addition, 2 lg total
RNA was reverse-transcribed using random hexamers and the
ThermoScript™ RT-PCR System (Invitrogen). Quantitative real-
time polymerase chain reaction (RT-PCR) was performed with a
LightCycler® 480 Instrument II (Roche) and SYBER Green PCR
Master Mix (Applied Biosystems). The sequences of primers are
presented in Table 1 and obtained from Sigma-Aldrich. The relative
expression level was obtained as described previously (Ying et al.
2009). Briefly, Ct values were acquainted using the built-in software
of LightCycler® 480 Instrument II, and differences of Ct value
between target gene and GAPDH (DCt) and then 2DCt were
calculated.

Statistics
All data are expressed as means±Standard Error of theMeans
ðSEMsÞ unless noted otherwise. Statistical tests were performed
using one-way or two-way analysis of variance (ANOVA) followed
by Bonferroni correction or unpaired t-test using GraphPad Prism
(version 5; GraphPad Software). The significance level was set at
p<0:05.

Results

Pulmonary Inflammation after DEP Treatment in Mice with
Lung Epithelial Cell-Specific IKK2 Deficiency
To ascertain the role of pulmonary inflammation in PM2:5
exposure–induced pathogenesis, we generated SFTPC-rtTA+ =−

tetO-cre+ =− IKK2flox=flox and littermate control (SFTPC-rtTA+ =−

tetO-cre−=− IKK2flox=flox) mice. PCR analysis showed that the 8-

Table 1. Primer sequences for RT-PCR.

Forward primer Reverse primer

F4/80 TGTCTGACAATTGGGATCTGCCCT TTGCATGTTCAGGGCAAACGTCTC
GAPDH GCAGTGGCAAAGTGGAGATTGTTGC CCCGTTGATGACAAGCTTCCCATTC
IL-6 ATCCAGTTGCCTTCTTGGGACTGA TAAGCCTCCGACTTGTGAAGTGGT
TNFa TTCCGAATTCACTGGAGCCTCGAA TGCACCTCAGGGAAGAATCTGGAA
IL-1b ACGGACCCCAAAAGATGAAG TTCTCCACAGCCACAATGAG
MCP1 GCTCAGCCAGATGCAGTTAA TCTTGAGCTTGGTGACAAAAACT
IKK2 deletion-confirminga CGCCTAGGTAAGATGGCTGTCT Primer 1: GTGGTCATAGGTCTGGTTGTCC

Primer 2: TAGTCCAACTGGCAGCGAATAC
IKK2 genotypingb GTCATTTCCACAGCCCTGTGA CCTTGTCCTATAGAAGCACAAC
SFTPC-rtTA genotyping CGCTGTGGGGCATTTTACTTTAG CATGTCCAGATCGAAATCGTC
Cre genotyping ACCTGATGGACATGTTCAGGGATCG TCCGGTTATTCAACTTGCACCATGC
aTo confirm the deletion of IKK2 by the treatment with doxycycline, three primers were used and visualized all three alleles (WT, floxed, and recombinant [D]) in one PCR reaction.
bTo genotype the IKK2 gene, two primers were used and visualized the WT and floxed alleles only.
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wk feeding with doxycycline diet resulted in marked IKK2 gene
recombination in the lung, but not in the heart, liver, or kidney
(Figure 1B). This recombination of IKK2 gene in the lung was
concurrent with significantly lower expression of pulmonary IKK2
protein (Figures 1C and D).

To determine the effect of lung epithelial cell–specific IKK2
deficiency on PM2:5-exposure–induced pulmonary inflamma-
tion, doxycycline diet–fed male SFTPC-rtTA+ =− tetO-cre+ =−

IKK2flox=flox (KO) and SFTPC-rtTA+ =− tetO-cre−=− IKK2flox=flox

littermates (tgWT) were subjected to 4-month intratracheal instil-
lation of DEP or PBS. BALF cell counting revealed that DEP-
instilled tgWT mice vs. PBS-instilled tgWT mice, but not DEP-
instilled KO mice vs. PBS-instilled KO mice, had greater BALF
total cell numbers (Figure 1E), a frequently used indicator of pul-
monary inflammation. BALF cell differentiation showed that
DEP-instilled tgWT mice vs. PBS-instilled tgWT mice, but not
DEP-instilled KO mice vs. PBS-instilled KO mice, had higher
macrophages and lymphocytes in BALF (Figures 1F–1G). BALF
proinflammatory cytokine levels are also frequently used as indi-
cators of pulmonary inflammation. BALF proinflammatory cyto-
kine assessments showed that DEP-instilled tgWT mice had
higher levels of BALF tumor necrosis factor a (TNFa), IL-1b,
and IL-6 than those of PBS-instilled tgWT mice (Figures 1J–1L).
The differences in the BALF proinflammatory cytokine levels
between DEP-instilled and PBS-instilled KO mice were smaller
than those between DEP-instilled and PBS-instilled tgWT mice
(Figures 1J–1L).

Levels of Circulating Proinflammatory Cytokines after DEP
Treatment in Mice with Lung Epithelial Cell–Specific IKK2
Deficiency
We also assessed the levels of circulating proinflammatory cyto-
kines. The assessments of circulating proinflammatory cytokines
showed that DEP-instilled tgWT mice had higher levels of circu-
lating TNFa and IL-6 than levels in PBS-instilled tgWT mice,
whereas DEP-instilled KO mice had almost comparable levels of
circulating TNFa and IL-6 in comparison with levels in PBS-
instilled KO mice (Figure 2).

Glucose Metabolism in DEP-Exposed Mice with Lung
Epithelial Cell–Specific IKK2 Deficiency
To ascertain the time dependency of glucose metabolic effect of
DEP exposure, IPGTT was performed monthly on these DEP- or
vehicle-treated mice. The results of IPGTT revealed that after 3-
month and 4-month exposures, DEP-exposed tgWT mice had

significantly lower glucose tolerance in comparison with that of
PBS-exposed tgWT mice, whereas DEP-exposed KO mice had
almost comparable glucose tolerance in comparison with that of
PBS-exposed KO mice (Figures 3A–3H). Furthermore, ITT
showed that, after the 4-month exposure, DEP-exposed tgWT
mice had significantly higher glucose-induced insulin secretion in
comparison with glucose-induced insulin secretion in PBS-
exposed tgWT mice (Figures 3I and 3J) and lower systemic insu-
lin sensitivity (Figures 3K and 3L). Coincident with the above-
mentioned inflammation analyses, DEP-exposed KO mice had
markedly smaller differences in glucose-induced insulin secretion
in comparison with glucose-induced insulin secretion of PBS-
exposed KO mice (Figures 3I and 3J) and almost comparable
sensitivity to insulin (Figures 3K and 3L).

Insulin Tolerance in DEP-Exposed Mice with Lung
Epithelial Cell–Specific IKK2 Deficiency
To further document the mechanism whereby DEP exposure
results in systemic insulin resistance, we assessed Akt phospho-
rylation level, a reflection of local insulin signaling (Guo 2014),
in insulin-sensitive tissues, including the liver, adipose tissue,
and skeletal muscle. DEP-exposed tgWT mice had significantly
lower insulin-induced Akt phosphorylation in the liver in com-
parison with that of PBS-exposed tgWT mice (Figures 4A and
4B), but DEP-exposed tgWT mice and PBS-exposed tgWT mice
had comparable insulin-induced Akt phosphorylation in the adi-
pose tissue and skeletal muscle (Figures 4A and 4B), suggesting
that DEP exposure induces glucose intolerance primarily through
induction of hepatic insulin resistance. Consistent with the inves-
tigation of systemic insulin resistance (Figure 3), DEP-exposed
KO mice and PBS-exposed KO mice had comparable Akt phos-
phorylation in the liver, adipose tissue, and skeleton muscle
(Figures 4A and 4B).

Hepatic IRS-1 Phosphorylation and Inflammatory Response
in DEP-Exposed Mice with Lung-Specific IKK2 Deficiency
In line with the assessment of hepatic insulin signaling (Figure
4), DEP-instilled tgWT mice had higher hepatic IRS-1 Ser307
and Ser1101 phosphorylation levels in comparison with levels in
PBS-instilled tgWT mice, whereas DEP-instilled KO mice and
PBS-instilled KO mice had comparable hepatic IRS-1 serine
phosphorylation (Figures 5A and 5B). To determine whether a
local inflammatory response mediates DEP exposure inducing
hepatic insulin resistance, we assessed hepatic activities of IKK2
and c-Jun NH2-terminal kinase (JNK), two central regulators of
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Figure 2. Levels of circulating pro-inflammatory cytokines after diesel exhaust particulate matter (DEP) treatment in mice with lung epithelial cell-specific
IKK2 deficiency. Plasma were harvested after phosphate buffered saline (PBS) or DEP-treated mice were euthanized and levels of TNFa (A), interleukin-1β (IL-1b)
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the inflammatory response. Our results revealed that DEP-
instilled tgWT mice had significantly higher phosphorylation lev-
els of IKK2 and JNK in comparison with those levels in PBS-
instilled tgWT mice (Figures 5C and 5D), suggesting that both
hepatic IKK2 and JNK signaling pathways are activated by expo-
sure to DEP. Furthermore, we found that DEP-instilled KO mice
and PBS-instilled KO mice had comparable hepatic IKK2 and
JNK phosphorylation levels. Consistent with the analyses of
IKK2 and JNK activity, quantitative PCR analyses revealed that
DEP-instilled tgWT mice had significantly higher hepatic mRNA
expression levels of TNFa, IL-1b, IL-6, monocyte chemoattract-
ant protein 1 (MCP-1), and the mouse macrophage marker F4/80

than expression levels found in PBS-instilled tgWT, whereas
DEP-instilled KO mice and PBS-instilled KO had comparable
IL-1b and IL-6 mRNA expression (Figure 6); additionally, the
differences in the expression levels of TNFa, MCP-1, and F4/80
were also markedly lower than those between DEP-instilled
tgWT mice and PBS-instilled tgWT mice (Figure 6).

Discussion
Compelling evidence has demonstrated that exposure to PM2:5
correlates with various abnormalities in glucose homeostasis and
increased risk for type 2 diabetes mellitus (Bowe et al. 2018;
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Lucht et al. 2019, 2018). Pulmonary inflammation is believed to
be central to the development of adverse health effects due to ex-
posure to PM2:5 (Rajagopalan et al. 2018), such as abnormal glu-
cose homeostasis. This role of pulmonary inflammation,
however, had not yet been systemically investigated. To ascertain
the role of pulmonary inflammation in the pathogenesis due to
exposure to PM2:5, the present study used SPFTC-rtTA and tetO-
cre alleles to knock out IKK2 specifically in lung epithelial cells,
and assessed how this genetic manipulation affected DEP expo-
sure–induced pulmonary inflammation and abnormalities in glu-
cose homeostasis. The major findings in this study suggest that: a)
lung epithelial cell-specific IKK2 deficiency was sufficient to reduce
DEP exposure-induced pulmonary inflammation; b) lung epithelial
cell–specific IKK2 deficiency nearly abolished DEP exposure–
induced systemic insulin resistance and subsequent glucose intoler-
ance; c) DEP exposure caused glucose intolerance primarily through
induction of hepatic insulin resistance, paralleled by higher hepatic
IRS-1 serine phosphorylation and expression of inflammatory
markers; and d) lung epithelial cell–specific IKK2 deficiency ame-
liorated DEP exposure–induced hepatic inflammation and insulin
resistance. Collectively, our data, which was generated in a trans-
genic mouse model, indicate that pulmonary inflammation is essen-
tial for the pathogenesis of abnormal glucose homeostasis due to
exposure to DEP.

The lung is the primary target organ of inhaled PM2:5, and
pulmonary inflammation has long been believed to be crucial in
the pathogenesis due to exposure to PM2:5 (Rajagopalan et al.
2018). However, except for the time course studies (Brook et al.
2010), this notion has not been systemically investigated, primar-
ily due to a lack of appropriate animal models. We previously
induced pulmonary inflammation through lung epithelial cell-
specific overexpression of constitutively active IKK2 using
SPFTC-rtTA and tetO-cre alleles and demonstrated that pulmo-
nary inflammation is sufficient to cause systemic insulin resist-
ance (Chen et al. 2017). In the present study, this genetic
manipulation strategy was exploited to delete endogenous IKK2
specifically in the lung epithelial cells. The lung epithelial cell–
specific recombination of the IKK2 gene (Figures 1B–1D) and
the lower number of DEP exposure–associated BALF immune
cells and proinflammatory cytokines in KO vs. tgWT mice
strongly support the suitability of these mice as a model system

for studying the role of pulmonary inflammation in pathogenesis
due to exposure to PM2:5. The specified role of pulmonary IKK2
in the development of PM2:5 exposure–induced pulmonary
inflammation is consistent with the numerous previous studies
that have shown that IKK2=NF-jB signaling pathway is central
to the inflammatory response (Pahl 1999) and several other stud-
ies have implicated it in PM2:5 exposure–induced pulmonary
inflammation (Dagher et al. 2007; Kafoury and Madden 2005;
Maciejczyk and Chen 2005; Mantecca et al. 2010; Nam et al.
2004). To the best of our knowledge, the present study is the first
one to show the essential role of IKK2 in induction of pulmonary
inflammation by exposure to DEP in living animals, thus provid-
ing a valuable animal model for the study of the pathogenic role
of pulmonary inflammation in a complex process, such as the one
due to exposure to DEP.

Both epidemiological (Alderete et al. 2017; Yang et al. 2018)
and toxicological (Liu et al. 2017; Wang et al. 2018; Xu et al.
2017) studies have shown that exposure to PM2:5 causes insulin
resistance and glucose intolerance. Consistent with these studies,
the present study reveals that long-term (e.g., 3- to 4-month) ex-
posure to DEP resulted in marked insulin resistance and glucose
intolerance in tgWT mice. In contrast, short-term (e.g., 2- to 3-
month) exposure to DEP did not cause any significant differences
in glucose homeostasis (Figures 3A–3D). This time dependency
is consistent with recent epidemiological studies (Yitshak Sade
et al. 2016). Notably, we previously showed that exposure to con-
centrated ambient PM2:5 rapidly induced abnormalities in glucose
homeostasis in diabetic KKAy mice (Liu et al. 2014). Taken to-
gether, these studies suggest that there may be populations who
are potentially susceptible to PM2:5 exposure, in particular indi-
viduals with increased risk for diabetes. Glucose tolerance is col-
lectively determined by circulating insulin level and systemic
sensitivity to insulin. The present study demonstrates that expo-
sure to DEP resulted in lower systemic insulin sensitivity but
greater glucose-induced insulin secretion in tgWT mice than are
found in those exposed to PBS, suggesting that DEP exposure
causes glucose intolerance primarily through induction of sys-
temic insulin resistance. Furthermore, we show that DEP expo-
sure was associated with lower insulin signaling in the liver but
not in the adipose tissue or skeletal muscle. To our knowledge,
the present study is the first one to assess the insulin sensitivity
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effect of DEP exposure on all three insulin-dependent tissues
simultaneously. The liver as the primary target organ for DEP ex-
posure inducing systemic insulin resistance is consistent with our
previous study (Liu et al. 2017), and lower hepatic insulin sensi-
tivity after exposure to DEP is consistent with several previous
studies by others (Jian et al. 2018; Xu et al. 2017; Zheng et al.
2013). However, it is noteworthy that we recently showed that, in
a mouse model, exposure to concentrated ambient PM2:5 pro-
moted the inflammation of adipose tissues and decreased their in-
sulin sensitivity (Hu et al. 2017). Therefore, further study is
needed to verify the effect of PM2:5 exposure on the insulin sensi-
tivity of adipose tissues.

Another important finding in the present study is the demon-
stration that PM2:5 exposure–induced hepatic insulin resistance
was accompanied by hepatic inflammation, strongly supporting
the hypothesis that the latter may play a crucial role in PM2:5 ex-
posure inducing hepatic insulin resistance. This finding was fur-
ther supported by the DEP exposure–associated IRS-1 serine
phosphorylation. These data are consistent with previous studies
showing that exposure to concentrated ambient PM2:5 (CAP)
resulted in hepatic inflammation and IRS-1 phosphorylation at
Ser1101 (Zheng et al. 2013). More important, the present study
extended these findings, revealing markedly higher levels of IRS-
1 Ser307 phosphorylation upon exposure to DEP in comparison
with levels in mice treated with PBS. IRS-1 phosphorylation at
either Ser1101 or Ser307 was shown to inhibit signaling transduc-
tion via the insulin receptor (IR) and thus to lead to insulin

resistance (Copps and White 2012). Although IRS-1 Ser1101 was
shown to be phosphorylated by protein kinase C-h (PKCh) and S6
kinase beta-1 (S6K1) in a setting of overnutrition (Tremblay et al.
2007), IRS-1 Ser307 was shown to be phosphorylated by JNK and
IKK2 in response to TNFa treatment (Copps and White 2012).
Therefore, phosphorylation of IRS-1 Ser307 is generally believed
to be one of the molecular mechanisms for inflammation-induced
insulin resistance. In line with the increased IRS-1 Ser307 phos-
phorylation, the present study demonstrates that DEP exposure
was associated with significantly higher phosphorylation of JNK
and IKK2, two central regulators of inflammatory responses.
Collectively, these data suggest that DEP exposure–induced hepatic
insulin resistance may result from a local inflammatory response.

As one of its primary goals, the present study has also pro-
vided deep insight into the pathogenesis of hepatic inflammation
and consequent insulin resistance due to exposure to PM2:5. The
present data strongly suggest that egress from the pulmonary
inflammatory response is central to the development of hepatic
inflammation and insulin resistance due to exposure to PM2:5.
Evidence for this role of pulmonary inflammation include our
finding that exposure to DEP was associated with significantly
higher circulating proinflammatory cytokines, such as TNFa, and
IL-6 in tgWT mice. These differences in circulating proinflamma-
tory cytokines are consistent with findings in numerous previous
studies (Bai and Sun 2016; Feng et al. 2016). Furthermore, we
show that lung epithelial cell–specific IKK2 deficiency seemed to
nearly abolish the higher circulating levels of proinflammatory
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Figure 5. Hepatic IRS-1 phosphorylation and inflammatory response in diesel exhaust particulate matter (DEP)-exposed mice with lung epithelial cell-specific
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cytokines associated with DEP exposure, such that cytokine lev-
els in DEP-treated mice were similar to those in PBS-treated
mice (Figure 2).

Although additional work is needed to pinpoint its role,
these findings suggest that in a transgenic mouse model, pulmo-
nary inflammation is essential for the PM2:5 exposure–induced
increases in circulating proinflammatory cytokines. Given the
well-established role of proinflammatory cytokines in various
liver diseases, including inflammation and the demonstration of
marked hepatic inflammation, it can be postulated that PM2:5
exposure–induced hepatic inflammation may be subsequent to
increased circulating proinflammatory cytokines, which in turn
results from pulmonary inflammation. In contrast, the marked
decrease in KO mice of DEP exposure–induced hepatic inflam-
mation and insulin resistance almost rules out the possibility
that extrapulmonary translocation of DEP components plays an
important role in this pathogenesis, because no major metabolic
change (reflected by BW assessment) was noted in KO mice.

Although the present study furthers our understanding of the
mechanism of action of DEP, caution should be taken when
extrapolating these results to ambient PM exposure due to the
limitations of the present study. First, it should be noted that in-
tratracheal instillation, although routinely used in toxicological
investigations due to its multiple advantages, is different from
actual human inhalation, particularly in the deposition pattern.
This difference may influence not only the distribution of par-
ticles in the lung but also the exposure–response relationship
(Osier et al. 1997; Silva et al. 2014). In addition, consistent with
previous studies (Henderson et al. 1995; Robertson et al. 2012),
the present results suggest a proinflammatory action of chronic
instillation of PBS in the lung (Figure 1). Because all the experi-
mental groups in this study were treated with PBS, this treatment
is not expected to be a confounding factor in the study. However,

further study is required to exclude the potential effect of this
nonspecific inflammation on the sensitivity of mice to PM
(Henderson et al. 1995). Moreover, although DEP may be the
major source of ambient PM2:5 in some areas, their chemical
compositions are generally different. Therefore, further study is
warranted to determine the role of pulmonary IKK2 in the devel-
opment of glucose intolerance due to exposure to ambient PM2:5.
Another factor to note is that the KO mice had marked remaining
IKK2 expression in the lung (Figures 1B–1D), which may be due
to the presence of nonepithelial cells in the lung or the ineffi-
ciency of the cre system. In human lungs, only about one-third of
total lung cells were epithelial cells (Crapo et al. 1982).
Therefore, the presence of nonepithelial cells in the lungs was
more likely the primary reason for the remaining IKK2 expres-
sion in the KO mice. Furthermore, the induced lung epithelial
cell–specific knockout of IKK2 (Figures 1B-1D) was verified at
the end of the 8-wk doxycycline feeding only. Because the mice
were not fed the doxycycline diet beyond those 8 wk, we cannot
rule out the possibility that the induced knockout of IKK2 was
partly restored during the 4-month PBS/DEP instillation due to
the turnover of lung epithelial cells.

Conclusion
Our findings suggest that in a transgenic mouse model, an IKK2-
dependent pulmonary inflammatory response was essential for
the development of abnormal glucose homeostasis due to expo-
sure to DEP.
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